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ABSTRACT

This paper discusses the issues which arise when combining multigrid strategies with

adaptive meshing techniques for solving steady-state problems on unstructured meshes. A

basic strategy is described, and demonstrated by solving several inviscid and viscous flow

cases. Potential inefficiencies in this basic strategy are exposed, and various alternate ap-

proaches are discussed, some of which are demonstrated with an example. Although each

particular approach exhibits certain advantages, all methods have particular drawbacks, and

the formulation of a completely optimal strategy is considered to be an open problem.
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INTRODUCTION

Although most work on adaptive meshing methods has concentrated on the logistics

of refining the mesh and the formulation of suitable refinement criteria, efficient solution

techniques for the resulting discrete equations are also required in order to enable both fast

and accurate solutions. The use of multigrid methods as fast solvers for computational fluid

dynamics problems on both structured and unstructured meshes is now well established.

Adaptive meshing in particular provides a natural setting for the use of multigrid solvers.

The various refined meshes generated from the adaptive process can be used to form the

set of coarse and fine meshes of the multigrid sequence. The multigrid algorithm can then

be used to accelerate the convergence to steady-state of the discrete equations on the finest

adaptive mesh. In fact, the synergy between the two techniques is greater than may be

initially apparent, and has roots in the ideas of multi-resolution (see Figure 1). The role of the

adaptation process is to identify regions of the domain where the resolution of smaller scales is

required and to generate these required new mesh levels, while the role of the multigrid solver

is to eliminate the various high and low frequency errors of the solution on the grid level which

best represents them. This has led to the development of methods such as the FAC (Full

Adaptive Composite) method, [1], and to the notion of the dealgebraization of multigrid, as

described by Brandt [2], where the multigrid procedure is no longer viewed as simply a fast

solver for discrete equation sets, but rather as part of a complete strategy for approximating

the solution to the continuous partial differential equation. Spatial convergence is achieved by

the adaptation process, while temporal or numerical convergence is achieved by the multigrid

procedure. Additionally, the multigrid defect-correction (i.e. coarse grid source term in the

multigrid formulation) can be used to devise a refinement criterion.

Although these ideas are appealing, their application to systems of non-linear equations

such as those found in computational fluid dynamics is still a relatively unexplored research

area. In the present work, various adaptive-meshing multigrid strategies are proposed, and

evaluated both in practical terms (i.e. speed of convergence, complexity of V or W cycle),

and in terms of how well they obey the principles of multi-resolution.

DESCRIPTION OF BASE STRATEGY

The first adaptive-meshing multigrid strategy employed is denoted as the "basic strat-

egy". This method has been found to perform well in practice, and has been used to solve

a number of inviscid and viscous steady-state cases. The approach relies exclusively on the

use of unstructured meshes which greatly simplifies the task of adaptation.



SingleGrid Solver

The Euler (inviscid) or Navier-Stokes(viscous)equationsarediscretizedusinga Galerkin

finite elementapproach[3]. In the inviscidcase,this reducesto afinite-volume schemewhere
the flow variablesarestoredat the verticesof the mesh,and the control volumesare formed

by the union of all triangleswhich touch the consideredvertex. This correspondsto a central

differencescheme,and additional dissipativeterms must be added in order to preservesta-

bility. Theseareconstructedasa blendof an undivided Laplacianand biharmonic operator,

with the Laplacian termsusedto suppressoscillationsnear shocks,and the biharmonic terms

usedto prevent odd-evendecouplingin regionsof smooth flow. Thesediscreteequationsare

integrated in time usinga five-stagetime-stepping schemedevisedspecificallyto damp high

frequencyerror modes(as is requiredin a multigrid scheme).Integration to steady-state is
acceleratedby the useof local time-steppingand residual averaging[3,4,,5].

Adaptive MeshingProcedure

Adaptively refined meshesaregeneratedby inserting new points into the existing mesh

in regionsof largegradients,and connectingthem to existing meshpoints by Delaunaytri-

angulation. The refinementcriterion is basedon simpleundivided differencesof one or more

flow variables. The differenceof the flow variablesacrosseachmeshedgeis comparedto the

averagedifferenceacrossall edgesof the mesh. When the differencealong a given edgeis
larger than somefraction of the averagedifference,a new meshpoint is addedmidway along

the edge. If one or moreedgesof a given triangle are flaggedfor refinement in this manner,

then all three edgesare refined. This ensuresan isotropic refinementstrategy, which is nec-

essaryto guaranteehigh quality mesheswhen using Delaunay triangulation. Onceall the

newmeshpoints havebeendetermined,they are inserted into the existing meshsequentially

usingBowyer's algorithm for Delaunaytriangulation [6]. Givenan initial Delaunaytriangu-
lation, this method enablesthe insertion of a point anywherein the mesh, and determines

the reconnectionof this point to the existing points, which is the Delaunaytriangulation of

this newly augmentedpoint set. As illustrated in Figure 2, Bowyer'salgorithm first identifies

all triangles whosecircumcircle is intersectedby the new point. These triangles are then

removedcreating a polygonal cavity, and the new triangulation is formed by joining the new

point to all verticesof the polygonal cavity. New boundary points are repositioned onto

the spline curveswhich define the geometryof the boundaries. After all points have been
inserted, the mesh is smoothedand edgesare swappedin order to preservethe Delaunay

property [4,.5,7].Severalpassesof smoothingand swappingareusually performed. The use
of Bowyer's algorithm in this manner is ideally suited for adaptive meshingproblems,since

new meshesareconstructed through local modifications of an existing mesh,which is much



more efficient than global mesh regeneration. Furthermore, the Delaunay construction of

the adaptive meshespreventsthe appearanceof degenerateconnectivities which can arise
with simple refinementschemessuchas triangle subdivision. Although a reverseBowyer's

algorithm is simple to formulate in two-dimensions,provisionsfor point removal have not
been implemented, since the applications here concernexclusively steady-state problems.

For transient problems,point removalcapabilitiesare essential.

Multigrid Approach

There arevariouspossiblestrategiesfor implementinga multigrid method with adaptive

meshingtechniquesfor unstructured meshes.Oneapproachconsistsof using the adaptively
refined meshesas the multigrid levels themselves[4,5]. If, for example, adaptively refined

meshesare created by simply subdividing the appropriate mesh triangles into four finer

nested triangles, multiple adaptive refinementpassesresult in a sequenceof fully nested

adaptivemeshesto which multigrid canbeapplied in astraight-forward mannerusingsimple

restriction and prolongation (inter-grid) operators. This approach has been pursued by

severalauthors in the literature [8,9]. Oneof the drawbacksof this approachis to restrict

the type of adaptive refinementstrategieswhich may beemployed,and to tightly couple the

multigrid processwith the adaptivemeshgenerationprocedure. Furthermore, if the initial

unadaptedgrid is relatively fine (which is most oftenrequiredto resolveinitial flow features),

multigrid effÉciencywill be limited by the ability to efficiently solvethe discreteequationsof
this mesh.

The multigrid approachadoptedin this work reliesonasequenceof coarseand finemeshes
which are essentiallyindependentfrom one another [3,4,5,11].The various meshesof the

sequenceare not required to be nested,or evento havecommonpoints. They simply must

discretize the samephysicaldomain. Linear interpolation is usedto transfer flow variables,
residualsand connectionsbetweenthe variousmeshesof the sequence.The intergrid transfer

operators must be formed in a preprocessingoperation, where for each vertex of a given

grid, the enclosingtriangle on the next coarser(or finer) grid must bedetermined. Oncethis

information has been determined,grid transfer addressesand weights can be determined

and stored for later use in the multigrid solution cycles. This multigrid strategy enables

the adaptively refinedmeshesto be constructedby any meansavailable,evenglobal mesh

regeneration. The Delaunay construction employed here, and described in the previous
section, generally results in non-nestedmeshes,and mesheswith no coincident points (due

to the meshsmoothingoperationwhich displacesthe meshpoints). Furthermore,additional

coarser grids may be utilized to acceleratethe solution of the initial grid itself. Theseare

generated using the sameglobal meshgenerationprocedureas the initial mesh, but. with



lower resolution throughout the domain. The basic procedure consistsof generating the
initial mesh, and several coarsermeshes. The flow solution on the initial mesh is then

obtained usingthis sequenceof meshesin the multigrid procedure.A new adaptively refined
meshis then constructed,basedon the solution on the initial mesh, and this mesh is then

added as a new finer mesh to the current stack of multigrid levels. The restriction and

prolongation operatorsbetweenthe new and the initial meshare then computedand stored.

The flow solution is interpolated from the initial mesh to the new finer mesh using these

operators, and multigrid cycling resumes,using the newly augmentedsequenceof meshes.

This procedurecan be repeated,eachtime adding a new finer mesh to the sequence,until

the desiredlevel of accuracyis obtained, asdepicted in Figure 3.

A third nmltigrid approachfor unstructured meshesconsistsof constructing the sequence

of coarselevelmeshesautomatically, givenafinegrid. This approachisembodiedin algebraic

multigrid methods [12], agglomerationstrategies[13,14,15],aswell asautomatedcoarsening
methodsusedin conjunction with the independent-meshmultigrid approachdescribedabove.

Thus, in the contextof adaptivemeshing,eachtime anewfiner meshis generated,the history

of adaptiverefinementwhichresulted in this meshis ignored,and an automatedalgorithm is

usedto generatea completesetof coarsemeshlevelsbasedon the new mesh.The philosophy
in this approachis to employ multigrid simply asa fast solverfor discreteequation sets,in

the samemanner as an implicit method or direct solver may be usedto solve the fine grid

equations. Since the history of refinement is not utilized as part of the solution strategy,

the multi-resolution conceptsdiscussedpreviously are not exploited. Suchmethods have,
however,provedto be advantageous,and will be discussedin more detail in the sectionon

Adaptive Multigrid Issues.

RESULTS

Thefinite-volumemethod describedabove,combinedwith the non-nestedmultigrid strat-

egy and the Delaunaypoint-insertion adaptivemesh-refinementtechniquehasbeenused to

solvevarious inviscid and viscousflow cases.Thesetechniqueshave beenimplementedin a

singleFORTRAN code,which takesasinput a sequenceof coarseinitial meshes,the desired
numberof adaptive levels,the numberof cycleson eachlevel and the refinementcriteria for

eachlevel,and outputs the sequenceof adaptivemeshesgeneratedand the solution obtained
on the finest mesh.

Inviscid Flow Case1

The first caseconsistsof the inviscid transonic flow over a NACA 0012airfoil at Mach

number 0.8and 1.25degreesincidence.For this case,the outer boundary wasapproximately



circular and placedat a distanceof 100chordsfrom the airfoil. The initial meshcontained

2,112 points, and .5coarsermesh levelswere generatedto acceleratethe solution on this
mesh.The coarsestmeshof this sequencecontainsonly 40points. Three levelsof adaptivity

wereemployedfor this calculation. The final meshis shownin Figure 4, and the solution

in terms of Mach contours is depicted in Figure 5. This meshcontains a total of 14,219

points. Mesh refinement is evident in the region of expansionnear the leading-edge,and in

the vicinity of both the upper and the weak lower shock. The slip line at the trailing edge
of the airfoil is howeverpoorly resolved.The undivided gradient of density wasusedasthe

refinementcriterion. Figures6 and 7 depict,the computedsurfacepressuresand entropy for

this case.The shocksarewell resolved,and the lift coefficient:of 0.3587is in agreement,with

previously reported values[16]. Entropy, computedas

P

s-- P_ 1
..2..
o_

should be zero for inviscid flow ahead of the shock waves. As can be seen from Figure

7, the computed values near the leading edge are well below 1%, a good indication of the

local accuracy of this solution. The convergence rate of the entire adaptive process is shown

in Figure 8. At each state of adaptivity, 25 W-multigrid cycles were used to converge

the solutions, and 100 W-cycles were used on the final level, in order to demonstrate the

asymptotic convergence rate of this method. The residuals were reduced by 6 orders of

magnitude in 100 cycles, which corresponds to an average reduction rate of 0.89. This case

was performed in about. 45 minutes of CPU time on an SGI Indigo R4000 workstation.

Inviscid Flow Case 2

The second case consists of transonic flow over a NACA 0012 airfoil at a freestream Mach

number of 0.95 and 0 degrees incidence. For this case, two oblique shock waves and a normal

shock wave are set up downstream of the airfoil. The position of the normal shock is very

sensitive to the accuracy of the solution. A similar strategy to that discussed for the previous

case is employed; i.e., five initial meshes, three levels of adaptivity, undivided difference of

density as a refinement criterion. The final mesh and solution are depicted in Figures 9 and

10 respectively. This mesh contains approximately 16,000 points. The normal shock shown

in Figure 10 is located 3.06 chord lengths downstream of the trailing edges, which is slightly

ahead of that reported elsewhere [17]. In this case, tile outer boundary was located 130

chords away from the airfoil leading edge. A previous run on a similar mesh with the outer

boundary located at 42 chords yielded a normal shock position of 2.6 chords. This highlights

the sensitivity of the solution to the position of the outer boundary. The use of a simple



undivided differenceas refinementcriterion may also be partly responsiblefor the inexact
shock location in this case.

This caseshould be perfectly symmetric about the y = 0 axis, since the NACA 0012

profile is symmetric, and the flow incidence is zero. An appealing feature of the present

adaptation strategy is that, in such cases, given an initial symmetric grid, the adaptively

refined grids remain perfectly symmetric, as can be seen from Figure 9. In the final solution,

the lift coefficient remained zero, to 6 significant figures.

Inviscid Flow Case 3

The third test case involves the inviscid subsonic flow over the Sudhoo-Hall four element

airfoil. The freestream Mach number is 0.2, and the incidence is 0 degrees. Three levels

of adaptivity were used for this case, beginning with an initial mesh of 6,466 points. Four

coarser meshes were employed to accelerate the convergence on the initial mesh. Thus, a total

of 8 mesh levels were used in the final phase of the calculations. Tile final mesh contained a

total of 22,792 points, and is depicted in Figure 11. Figures 12 and 13 depict the computed

surface pressures and surface entropy on the finest mesh. As can be seen, the entropy is

less than 0.1_: over the entire configuration, indicating a good level of local accuracy in the

solution. The lift and drag coefficients for this case were 4.9245 and -0.0038 respectively.

For inviscid isentropic flows, the overall drag should vanish. Thus the drag value of -38

counts is a good indication of the global accuracy of the solution. Figure 14 depicts the

convergence rate for this case, where 100 multigrid W-cycles were performed at each level of

adaptivity. The slopes of the various multigrid convergence histories are nearly identical on

the four different mesh levels, demonstrating the mesh independent, convergence property of

the multigrid algorithm. Convergence on the final mesh is only slightly slower than that on

the initial levels, resulting in an average reduction rate of 0.925. The convergence history of

the computed lift coefficient is also plotted. On each mesh level, the lift coefficient comes

very close to its final value in less than ,50 cycles. The effect of grid convergence can also be

seen by the diminishing differences between the final lift values on consecutively finer meshes.

Figure 14 thus illustrates the concept of using adaptive-multigrid as a method of solving for

the continuous set of partial differential equations, with the lift coefficient converging to the

infinite resolution value, and the multigrid procedure driving the numerical solution on each

level. This entire run, including all mesh adaptivity, was achieved in approximately 2 hours

on an SGI Indigo R4000 workstation.



ViscousFlow Case

This caseconsistsof viscousturbulent flow over a three-elementhigh-lift airfoil section.

The far-field boundary wasplacedat a distanceof 50chords awayfrom the airfoil (wind-

tunnel walls werenot modeledin this case).The finite-elementdiscretization of the Navier-

Stokes equations described previously was employed,and the single equation turbulence

model of Spalant-Allamaras [18] was implementedto account for turbulence effects. The

samemultigrid strategy describedpreviouslywasemployedto solveboth the flow equations

and the turbulence equation in a looselycoupledapproach.The meshrefinementprocedure

required some modification for the highly-stretchedmesheswhich are typically used for

viscousflows. The Delaunayin-circle criterion describedaboveis usedin a mapped space,

(resulting in a Delaunay in-ellipse criterion) for both the initial mesh construction, and
subsequentadaptive refinementoperations[19]. Whennew boundary points are generated

by the refinementprocedure,thesemust be displacedin order to coincidewith the surface

splineswhich definethe body shape.Whereasin the inviscidcasethis waseasilyachieved,in
the viscouscase,this displacementcan require the restructuring of many layersof grid cells

near the boundary. This is due to the possibility of the boundary point displacementbeing

much larger than the local normal grid spacingfor highly stretchedmeshes.Thus, a system

of pointers is managed,in order to enablelocal meshreconstructionnear the boundary [19].

For this case,the freestreamMach number is 0.2, the incidenceis 16 degrees,and the

Reynoldsnumber is 9 million. Three levelsof adaptivity wereemployed. The initial mesh
contained approximately 25,000points, while the final adaptive meshwhich is depicted in

Figure 15, contains 120,307points. This meshexhibits very high resolution in the regions

of rapid expansionsand in boundary layer and wakeregions.A combination of (undivided)
pressureand Mach number gradientswere employedto identify inviscid and viscousphe-
nomenafor refinement. The solution in terms of computedsurfacepressure,is depicted in

Figure 16. This caseinvolved a total of 7 multigrid levels(three adaptive levels,four initial

levels). The solution wasobtained by running 100multigrid W-cycles on each mesh, and
300 cycleson the final mesh. The residualswerereducedby 2.5orders of magnitude on the

finest mesh in 300 cycles. This rate is substantially slower than for the inviscid cases,and

is primarily due to the stiffnessassociatedwith high grid stretching. For the viscous flow

cases,the meshadaptivity operationsare run asa separatejob with a stand-alonecode.

This casehasbeen computedpreviouslyon non-adaptedmeshesof high resolution (up

to 240,000points) and comparedextensivelywith experimental data. [20]. Although the

solution in Figure 16 appearswell resolved,there are certain features, (suchasthe wake of
the slat element for example), which are lost prematurely when comparedwith the results



of [20], due to inadequategrid resolution. This illustrates the difficulty in applying adaptive
meshing to viscousflows, where featuressuchas wakesare both spatially hyperbolic and

nonisotropic, and highlights the needfor better refinementcriteria.

ADAPTIVE MULTIGRID ISSUES

Although the previousexamplesdemonstratethe effectivenessof multigrid as anefficient

solution strategy for adaptive meshingproblems,certain characteristicsof adaptive prob-

lems can degradethe overall efficiency of the abovemultigrid approach. These manifest

themselves,not as degradationsof the observedconvergencerates, but rather as unwanted

increasesin complexity (number of operations)of the multigrid cycle. For example, in the

non-adaptive two dimensional case, the complexity of a V-cycle is bounded by 4/3 work

units, and that of a W-cycle by 2 work units, wherea work unit is definedasthe equivalent

work of one fine grid iteration (seeFigure 17 for the definition of thesecycles). Here, the
meshesare not generatedadaptively, and the aboveboundsare computed assumingeach

coarsermeshlevel contains 1/4 the number of points of the previous level. In the caseof

adaptively generatedmeshes,wheresuch relations betweenthe complexities of the various

mesh levelsno longerhold, the V-cycle complexity becomesequal to the sum of the com-

plexitiesof all meshesin the sequence,while the W-cycle complexity can becomeso high as

to make it impractical.

Even the V-cycle complexity is much higher than it need be. For adaptively refined
meshes,refinementonly occursin localizedregionsof the mesh,and there are large regions

of the domain wherethe meshresolution is essentiallyunaltered betweenmesh levels. Re-

peatedly time-steppingin these regionsof the meshon various levelsrepresentsa wasteof

computational effort. In this section, two strategieswhich overcomethis increasein com-

plexity for V-cyclesare described. A third approachwhich results in optimum complexity,

thus enabling the useof V or W cycles,is finally discussed.

The Zonal Fine Grid Scheme

The basic idea behind this scheme[21] is to omit time-stepping in regionsof the mesh

which have not beenrefined with regards to the previous level. A crude implementation

consistsof making useof the samemultigrid strategy asdescribedpreviously, but blanking
out the appropriate verticeson eachmeshlevel. In actual fact, the fine meshconsistsonly

of the regionswhich havebeenrefined, with possiblysomeextra buffer layers. The method

can be implemented by only storing these regionsat each level in order to savememory

(although this hasnot beendonein this work).



As an example, consider the adaptive meshusedto compute the inviscid flow over a

tandem airfoil configuration, shown in Figure 18. This mesh is the result of 6 levels of
adaptivity. For the zonal fine grid scheme,the 3rd and 4th adaptive levelsare depicted

in Figure 19. Figure 20 comparesthe convergencerates of the zonal-finegrid schemewith
that of the global multigrid schemedescribedpreviously for this case. There are in fact 8

meshlevels in both multigrid cases,2 initial global levels,and 6 adaptively generatedlevels.

(The global levelsare identical for both schemes).The freestreamMath number is 0.7, and
the incidenceis :3degrees.The resulting transonic flow solution is qualitatively depicted in

Figure 21. Both multigrid schemesconvergeat nearly identical rates, in terms of residual

reduction per cycle. This result verifies the fact that multigrid time-stepping in regions

where no changein resolution occurs is unnecessary.The advantageof the zonal fine grid
schemeis the result of the reduction in complexityof the multigrid cycle,asshownin Figure

20. For this case, the zonal fine grid scheme is seen to be roughly twice as efficient as the

global multigrid approach.

This so-called zonal fine grid scheme developed in [21] is the unstructured mesh equivalent

of the fast-adaptive-composite scheme (FAC) [1], and as such embodies the multi-resolution

principles outlined in the introduction. Each mesh level is responsible for resolving a partic-

ular range of scales, and highly disparate length scales are not found on any common mesh,

as is the case in a global mesh with localized regions of adaptive refinement.

One of the drawbacks of this method is that the final solution lies on a composite mesh

which is spread over various multigrid levels. Aside from practical difficulties involved in

postprocessing the solution, this complicates other issues, such as the requirement of con-

structing a conservative discretization in the final solution, as well as the use of different

schemes on fine and coarse mesh levels.

Zonal Coarse Grid Schemes

The idea of the zonal coarse grid scheme is to overcome the difficulties encountered in

the zonal fine grid scheme due to the composite nature of the final solution, by maintaining

a global fine grid upon which the final solution is based. In order to maintain favorable

complexity, time-stepping is omitted on the coarser meshes in regions of the domain where

no mesh refinement takes place between two consecutive levels. This strategy is illustrated

in Figure 22, using one-dimensional linear meshes, and compared to the zonal fine-grid and

global multigrid strategies. The overall complexity of the zonal fine grid and coarse grid

schemes are necessarily equivalent. As can be inferred from the figure, the zonal fine grid

and coarse grid schemes are equivalent, except that in the former case the non refined mesh

regions are represented on the coarse level meshes, whereas in the latter, these are assigned



to the finest possiblemeshlevel. Hence,the zonalcoarsegrid schemesimply corresponds to

a reordering of tile local unrefined and refined mesh levels.

The convergence rate of the zonal coarse grid scheme is compared with that of the zonal

find grid scheme and the global multigrid scheme for the transonic tandem-airfoil case on

the mesh of Figure 18. As expected, all three methods yield similar convergence rates on

a per cycle basis, while the zonal fine and coarse grid schemes achieve a factor two gain in

efficiency over the global multigrid scheme in this case due to the reduction in complexity,

as shown in Figure 20. Thus the zonal coarse grid scheme is equivalent to the zonal fine grid

scheme in terms of efficiency, but enables the final solution to be computed on a global fine

grid. The disadvantage of this approach is that each time a new adaptively refined mesh is

generated, the zonal coarse meshes must be reassigned to the appropriate levels.

Aggressive Coarsening Strategies

While the zonal fine and coarse grid schemes achieve substantial reduction in the com-

plexity of a multigrid cycle for adaptively generated meshes, the use of a W-cycle with such

schemes is still unpractical, due to the relative complexities of the various mesh levels. Since

the W-cycle performs frequent visits to the coarse level meshes within a single cycle, the

mesh complexity must be reduced by at least a factor of four when going to the next coarser

level in order to guarantee a bound on the overall W-cycle complexity, as the number of

mesh levels increases. Another characteristic of the zonal multigrid schemes described above

is that. they rely on the adaptive refinement history in order to identify the coarse and fine

mesh levels. Such methods cannot be used effectively in the cases where this information is

not available, or in the case of a mesh of arbitrary construction.

Automated coarsening strategies can be employed to overcome these difficulties. Given a

fine mesh, these methods automatically generate coarser level meshes for use in the multigrid

algorithm. Algebraic multigrid [12], and agglomeration multigrid [13,14,15] are examples of

automated coarsening strategies. Automated coarsening algorithms have also been devised

for use with the fully nested multigrid approaches [10] and the non-nested approach [22].

These methods are attractive because they are fully automated and can be applied to any

given grid, regardless of its construction. These methods represent a philosophy in which

multigrid is decoupled form the adaptive process, and employed simply as a fast solver for

a discrete fine grid problem, much in the same manner as an implicit or direct, solver would

be employed.

Aggressive coarsening relates to the attempt in an automated coarsening process to op-

timize the complexity of the generated coarse mesh levels. For a multigrid smoother which

10



is designedto damp high-frequencyerrors (as is usually the case), the optimal reduction

in coarsegrid complexity betweentwo successivelevels is 4:1 in two dimensions, and 8:1

in three dimensions. Aggressivecoarseningstrategiescan be devisedwhich result in such
reductionsof meshcomplexity, thus resulting in an overall multigrid cycleof near optimal

complexity,and enablingthe useof V or W-cycles. Although the complexity of the multigrid

cycle may be optimal, the overall solution efficiencycanonly be competitive provided the

multigrid convergencerate doesnot degradesubstantially. Figure 23 providesa comparison

betweenthe coarsemesh level obtained by two passesof aggressivecoarsening on the fine

mesh of Figure 18, and the equivalent mesh from the global multigrid sequence (6th level

out of 8). Because each cell of the original grid is forced to "grow" at the same rate, the

large outer boundary cells are seen to grow much more rapidly throughout the coarsening

process than the small refined cells in the shock region of the fine mesh. This results in

large discontinuities in cell size which become even more pronounced on the coarser levels.

This in turn may degrade the observed convergence rate of a multigrid scheme based on

these mesh levels. A similar behavior is observed for agglomeration multigrid methods [15].

Aggressive coarsening strategies are evidently in complete violation of the multi-resolution

principle associated with adaptive multigrid methods, where each mesh level is responsible

for a given range of scales. Not only does each mesh level contain a wide range of scales in

the present approach, but the bandwidth of this range increases on the coarser mesh levels.

Nevertheless, for many problems, aggressive coarsening strategies are highly desirable,

both due to their fully automatic nature, and their low complexity. Such methods could

obviously be improved by trading off complexity for more regularity in the coarse mesh

levels, and thus better multigrid efficiency. However, this task generally requires global

information about the current fine mesh construction (i.e. in the adaptive mesh case the

history of refinement). This has important implications for the future design of automated

coarsening techniques, since at present, most of these methods (including algebraic multigrid

methods) rely exclusively on local information for constructing coarser levels.

CONCLUSION

Multigrid methods and adaptive meshing techniques have been shown to be complimen-

tary strategies which, when combined in the appropriate manner, can lead to a powerful

method which enables rapid convergence, both numerically and spatially, to the continu-

ous partial differential equation. Such methods naturally embody the principle of multi-

resolution where each mesh level is responsible for the spatial and numerical resolution of

given length scales. In practice, strict adherence to these principles is not always possible

11



or desirable. Successfulmethods must achievea balancebetweencomplexity, convergence

efficiency,practicality, and easeof implementation.

A non-nested multigrid approach which utilizes each new adaptively refined mesh as

an additional multigrid level has been shownto work well in practice for a range of fluid

dynamicsproblems. The simplerefinementcriterion basedon gradientsin the flow solution
is not sufficiently reliable for application to all typesof flows,particularly in the viscouscase.

hnprovedrefinementcriteria and/or better errorestimatesaresorelyneededbeforeadaptive

meshingcanbe routinely usedwith confidencefor complexviscousflows.
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!
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Figure 1: Illustration of the Ideal Multi-resolution Principle of

Adaptive Meshing Combined with Multigrid where Each Mesh Level

o[ the Ivlultigrid Sequence Represents a Unique Resolution Scalc.
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Figure 2: Illustr_ttioI_of Bowyer'sAlgorithln for DelaunayTrian-
gulationNewPoint is Insertedinto Bxisting MeshBy Removingall
TriangleswhoseCircumcirclesCoutaintheNewPoint,andRejoining
the NewPoint to All Verticesof the ResultingC_vity.
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Figure 3: Full Multigrid Strategy Used ill Conjunction with Adap-

tive Meshing Each New Adaptive Mesh is Added onto the Stack, the

Solution is Interpolated onto the New Mesh, and Multigrid Cycling
Resumed.
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Figure 4: Final Adapted Mesh for Flow Over NACA 0012 Airfoil

(Number of Points: 14,219)

18



Figure 5: ComputedMachContoursoil AdaptedMeshoverNACA
0012Airfoil (Mach= 0.8, Incidence = 1.25 degrees)
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Figure 8: Full Multigrid Convergence Rate on Initial and Three

Adapted Meshes for Flow over NACA 0012 Airfoil (Ivlach = 0.8,

Incidence = 1.25 degrees)
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Figure 9: Final Adapted Mesh for Flow over NACA 0012 Airfoil

(Mach= 0.95, Incidence = 0 degrees, Number of Points = 16,000)

23



Figure 10: Computed Mach Contours on Adapted Mesh for Flow

over NACA 0012 Airfoil (Mach= 0.95, Incidence = 0 degrees, Num-

ber oi_-P0ints -- 16,000)
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Figure 11: Final AdaptedMeshEmployedfor Computationof In-
viscidFlowoverFourElementAirfoil (Mach= 0.2, Incidence= 0

degrees, Number of Points = 22,792)
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Figure 12: Computed Surface Pressure Distribution for Inviscid

Flow over Four Element Airfoil (Mach = 0.2, Incidence = 0 degrees,

Number of Points = 22,792)
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Figure 15: Final Adapted Mesh for Computation of Viscous Turbu-

lent Flow Over Three Element Airfoil (Mach= 0.2, Incidence = 16

degrees, Reynolds Number = 9 million, Number of Points = 120,307)
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Mesh for Viscous Turbulent Flow Over Three Element Airfoil (Mach

= 0.2, Incidence = 16 degrees, 1[eynolds Number = 9 million)
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Figure 18: AdaptedMeshEmployedfor Computationof Flowover
TandemAirfoil Configuration(Mach= 0.7,Incidence= 3 degrees)
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Figure 19: Fifth and Sixth Level Meshes Etnployed in the Zonal-

Fine Grid Scheme for Computation of Flow over Talldem Airfoil

Configuration
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Figure 21: Computed Mach Contours on Adapted Grid for Flow

over Tandem Airfoil Configuration
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Figure 23: Resulting Coarse Mesh using Two Passes of Aggressive

Coarsening on Fine Mesh of Figure 19, and Equivalent Mesh used in

Global Multigrid Sequence.
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